FacebookTwitter
Hatrack River Forum   
my profile login | search | faq | forum home

  next oldest topic   next newest topic
» Hatrack River Forum » Active Forums » Books, Films, Food and Culture » Rational Trigonometry

   
Author Topic: Rational Trigonometry
Dagonee
Member
Member # 5818

 - posted      Profile for Dagonee           Edit/Delete Post 
I was a math major as an undergrad, but by the end of it I was very close to the limits of my abilities. In fact, I never passed differential equations, although I did very well in more "advanced" classes dealing with linear programming, algorithmic anlaysis, and algebraic coding.

So it's exciting to hear about new math that I actually understand. This is called rational trigonometry.

Instead of being based on the length of sides and angles, it's based on concepts called quadrance and spread.

Quadrance and is basically distance squared, although the text says, "The relationship between the two notions is perhaps more accurately described by the statement that distance is the square root of quadrance."

Spread is a way of quantifying the separation of two lines. Imagine two lines intersect. Draw a segment perpendicular to one line to the other line. The ratio of the quadrances of the portions of the line between the intersection of the lines and the segment is the spread. This is much clearer when you look at the diagram on page 6 of the link. The spread is always a rational number in the coordinate system of the lines.

What's really cool about all this is that, apparantly, it lets you do all the side/angle calculations you do in basic trigonometry using polynomial math.

I don't know how interesting this is to anyone else, but I think I'll check this book out and play around with it.

Posts: 26071 | Registered: Oct 2003  |  IP: Logged | Report this post to a Moderator
pooka
Member
Member # 5003

 - posted      Profile for pooka   Email pooka         Edit/Delete Post 
huh, I'm not sure I quite understand the benefit of that over regular trigonometry. I guess fewer solutions that are irrational numbers? I don't quite remember what an irrational number is. One that cannot be espressed as a ratio?
Posts: 11017 | Registered: Apr 2003  |  IP: Logged | Report this post to a Moderator
Dagonee
Member
Member # 5818

 - posted      Profile for Dagonee           Edit/Delete Post 
A rational number can be expressed as the ratio of two integers. All others are irrational. This includes certain ratios, certain special values, and certain roots.

One benefit is that calculations can be done by hand. Right now, most people can easily use the sine to find the length of one side when an angle and another side are known, but what people forget is that we basically never calculate the values of of sin, cos, and tan. We use a computer or a calculator or a table. While practically this works fine, the book seems to suggest that there are relationships obscured in the calculations of the values of trignometric functions.

Perhaps some of these relationships will be made accessible to more people this way.

Posts: 26071 | Registered: Oct 2003  |  IP: Logged | Report this post to a Moderator
   

   Close Topic   Feature Topic   Move Topic   Delete Topic next oldest topic   next newest topic
 - Printer-friendly view of this topic
Hop To:


Contact Us | Hatrack River Home Page

Copyright © 2008 Hatrack River Enterprises Inc. All rights reserved.
Reproduction in whole or in part without permission is prohibited.


Powered by Infopop Corporation
UBB.classic™ 6.7.2